Griffco Valve Inc.
6010 N.Bailey Ave, Ste 1B
Amherst, NY 14226
Phone: 1 800-474-3326


Griffco calibration cylinders are designed to enhance the performance of chemical feed systems by providing a verification of the flow rate of the chemical feed pump. Robust construction of clear PVC with an easy to read graduation in mls and gph. Available in three models: EZ-Clean, Vented, and Open Top; and 13 sizes; 100 mL through 20,000 mL as detailed here.

## Features:

- High Reliability / Low Cost
- High Contrast Graduation Markings
- Clear Easy-View Tube
- Robust Construction
- Direct GPH Readout
- Sealed Top with Overflow Connection

■ Optional EZ-Clean Model

- Optional Open Top with Dust Cap


## Operation:

Griffco calibration cylinders are installed in the suction line to the chemical metering pump. Two isolating valves, (not supplied) must be installed in the suction line as per the drawing below. The top of the cylinder should be vented back to the storage tank or to drain.
Fill the cylinder to the top mark then close the valve from the chemical tank. Switch on the chemical feed pump and draw down the chemical in the cylinder for 30 seconds. Switch the pump off. The reading on the right side of the cylinder is a direct readout of USgph. Alternatively, observe the volume withdrawn on the ml scale. To convert to LPH or GPH use this formula:
LPH $=$ (volume $\div$ draw time) $\times 3.6$
GPH = (volume $\div$ draw time) $\times 0.952$
Note: Max. cylinder pressure is 15 psi.



## Sealed:

Top is glued to cylinder and contains a vent or overflow connection. (FNPT). Used in applications where there is a positive suction head and a permanent installation is desired.



## Loose Cap:

Top is loose and does not have a connection in the top. Dust cover only. Used in applications where there is no positive suction head and the cylinder must be filled from the top.


EZ-Clean: (Avail. 100-7000 mL only) Top is sealed with an O-ring and has a vent connection, but removable for easy cleaning. Used in applications where frequent cleaning is required such as polymer, alum, ferric chloride or chlorine.

| Capacity <br> (mL) <br> (Usaph) |  | Scale <br> (mL) <br> (Usaph) |  | A <br> (in) | B <br> (in) | C <br> (in) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 0 0}$ | $\mathbf{3 . 2}$ | 1 | .1 | 11 | 1.5 | $1 / 2$ |
| $\mathbf{2 0 0}$ | $\mathbf{6 . 4}$ | 1 | .1 | 19 | 1.5 | $1 / 2$ |
| $\mathbf{3 0 0}$ | $\mathbf{9 . 6}$ | 5 | .2 | 13 | 2.2 | $1 / 2$ |
| $\mathbf{5 0 0}$ | $\mathbf{1 6}$ | 5 | .2 | 13 | 2.5 | $3 / 4$ |
| $\mathbf{1 , 0 0 0}$ | $\mathbf{3 2}$ | 5 | .2 | 22 | 2.5 | $3 / 4$ |
| $\mathbf{2 , 0 0 0}$ | $\mathbf{6 4}$ | 10 | 1 | 20 | 3.7 | 1 |
| $\mathbf{3 , 0 0 0}$ | $\mathbf{9 5}$ | 10 | 1 | 17 | 4.9 | $11 / 2$ |
| $\mathbf{4 , 0 0 0}$ | $\mathbf{1 2 7}$ | 10 | 1 | 37 | 3.7 | 1 |
| $\mathbf{5 , 0 0 0}$ | $\mathbf{1 6 0}$ | 10 | 1 | 28 | 4.9 | $11 / 2$ |
| $\mathbf{7 , 0 0 0}$ | $\mathbf{2 2 5}$ | 10 | 1 | 38 | 4.9 | $11 / 2$ |
| $\mathbf{1 0 , 0 0 0}$ | $\mathbf{3 2 0}$ | 100 | 5 | 25 | 6.95 | 2 |
| $\mathbf{1 5 , 0 0 0}$ | $\mathbf{4 8 0}$ | 100 | 5 | 32 | 6.95 | 2 |
| $\mathbf{2 0 , 0 0 0}$ | $\mathbf{6 4 0}$ | $\mathbf{1 0 0}$ | 5 | 47 | 6.95 | 2 |

Chemical Resistance Guide (For a more complete listing see our Chemical Resistance Guide - Request Bulletin \# CRG 1000-94)

## RECOMMENDED

Acetic Acid 10-20\%
Acetylene
Adipic Acid
Alum
Aluminium Alum Aluminium Chloride Aluminium Fluoride Aluminium Hydroxide Aluminium Oxychloride Aluminium Nitrate Aluminium Sulfate Ammonia (dry-gas) Ammonium Acetate Ammonium Alum Ammonium Bifluoride Ammonium Carbonate Ammonium Chloride Ammonium Hydroxide Ammn. Metaphosphate Ammonium Nitrate Ammonium Persulfate AmmoniumPhosphate Ammonium Sulfate Ammonium Sulfide Ammonium Thiocyanate Arsenic Acid
Barium Carbonate Barium Chloride Barium Hydroxide

Barium Sulphate Barium Sulfide Beer
Benzoic Acid
Black Liquors Bleach ( $12 \% \mathrm{Cl}$ )
Borax
Boric Acid
Bromic Acid
Cadmium Cyanide
Calcium Bisulfide
Calcium Bisulfite Calcium Carbonate Calcium Chloride Calcium Hydroxide Calcium Hypochlorite Calcium Nitrate Carbon Dioxide Carbonic Acid Caustic Potash Caustic Soda Chlorine Water Chrome Alum Citric Acid Copper Carbonate Copper Chloride Copper Cyanide Copper Fluoride Copper Nitrate

Copper Sulphate
Cupric Fluoride
Detergents
Dextrose
Distilled Water
Ethylene Glycol
Fatty Acids
Ferric Chloride
Ferric Hydroxide
Ferric Nitrate
Ferric Sulfate
Ferrous Chloride
Ferrous Sulfate
Fluorosilicic Acid 25\%
Gallic Acid
Gasoline
Glycerine
Glycol
Glycolic Acid
Hydrobromic Acid 20\%
Hydrochloric Acid 35\%
Hydrocynac Acid
Hydrogen Peroxide 90\%
Hydrogen Sulfite
Kraft Liquors
Latic Acid 25\%
Lead Acetate
Lead Chloride
Lead Sulfate

Linoleic Acid
Linseed Oil
Lithium Bromide
Malic Acid
Mercuric Chloride Mercuric Cyanide Mercury
Methyl Alcohol
Methyl Sulfuric Acid Milk
Muratic Acid
Nitric Acid 10\%-60\%
Oleic Acid
Ozone
Palmitric Acid 10\%
Perchloric Acid 10\% Phosphoric Acid 10\% Phosphoric Acid 25\% Phosphoric Acid 75\% Phosphoric Acid 85\% Potassium Alum
Potassium Bicarbonate Potassium Borate Potassium Bromate Potassium Carbonate Potassium Chlorate Potassium Chloride Potassium Cyanide Potassium Fluoride

## NOT RECM'D

Acetic Acid
Acetone
Ammonia (liquid)
Ammonium Fluoride
Amyl Acetate
Benzene
Bromine, Liquid
Bromine, water
Butyl Acetate
Carbon Bisulfide
Carbon Tetrachloride
Chlorine Gas
Chlorine (wet)
Chromic Acid 10\%
Chromic Acid 50\%
Ethers
Fluorine Gas
Hydrofluoric Acid 50\%
lodine
Nitric Acid Anhydrous
Nitric Acid 68\%
Perchloric Acid 15\% Perchloric Acid 70\% Sulfur Dioxide (wet) Sulfuric Acid 80-94\% Titanium Tetrachloride Tributyl Phosphate
Turpentine

